V球=4πr3÷3 。
球的体积的原理是祖堩原理,是用夹在两个平行平面的几何体,用与这两个平面平行的平面去截它们,如果截得的截面的面积总是相等, 那么夹在这两个平面间的几何体的体积相等。
为了应用组堩原理,设球半径为R,Pi表示圆周率,"x^y"表示x的y次方,先将球分成两个半球,球出一个半球的体积就可求出球的体积,在半球顶上做一个与半球地面平行的平面,在这两个平面之间,构造一个圆柱体,使得它的高低面半径均等于球半径。
然后,在构造的圆柱体中去掉以该圆柱体的上底面为底面,以该圆柱体的高为高的圆锥体的那部分体积,则所剩的部分体积为2(Pi*R^3)/3, 5、用距离底面为h的平面去截这两个几何体,截得的半球的截面面积S1=Pi(R^2-h^2),截得的被去掉一个同底等高圆柱体的面积为S2=Pi(R^2-h^2)。
于是,在这两个平面之间,用平行于这两个平面的第三个平面截得的这两个几何体的截面积总有S1=S2,根据祖堩原理,这两个几何体的体积相等,于是就有半球的体积V/2=2(Pi*R^3)/3, 因此,球体的体积公式为:V=4(Pi*R^3)/3。
圆的表面积计算公式:S=πr²或S=πx(d/2)²。
圆面积=圆周率×半径×半径,半圆的面积:S半圆=(πr2)÷2,半圆的面积=圆周率×半径×半径÷2
圆环面积:S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径),圆环面积=外大圆面积-内小圆面积。
圆的周长=直径×圆周率,半圆周长=圆周率×半径+直径。
Copyright @ 2015-2022 世界金属报网版权所有 备案号: 豫ICP备2021032478号-36 联系邮箱:897 18 09@qq.com